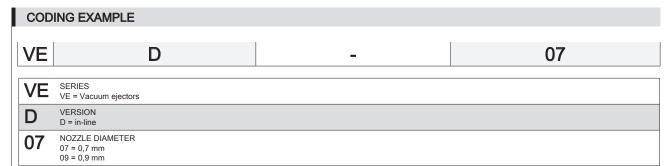
Inline ejectors Series VED

Vacuum ejectors without moving parts, based on the Venturi principle, used for direct installation on suction pads.

- » No moving parts for long life and maintenance
- » Easy and fast installation directly at the gripping point
- » Reduced dimensions and weight

Vacuum ejectors without moving parts, based on the Venturi principle.
These ejectors are used for direct installation inline between the suction pad compressed air supply.
This substantially reduces the volume to be evacuated and allows therefore shorter cycle times.

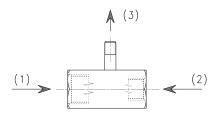

GENERAL DATA

Description - body in anodized Aluminium

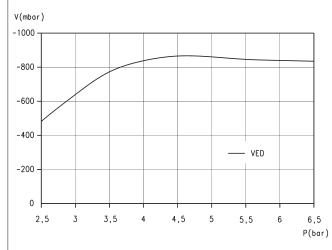
- internal nozzle in brass

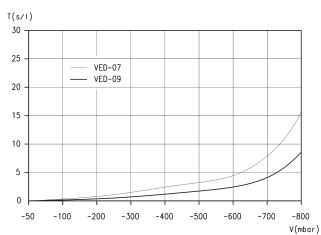
CK CAMOZZI

5



TECHNICAL DATA


- 1 = Compressed Air Inlet
- 2 = Vacuum Inlet
- 3 = Exhaust



TECHNICAL DATA														
Mod.	Ø nozzle (mm)	Degree of evacuation (%)	Suction rate max. (I/min)	Suction rate max. (m3/h)	Air consumption (I/min)	Air consumption (m3/h)	Optimum supply pressure (bar)	Weight (kg)						
VED-07	0,7	90	14	0,8	21	1,3	5	0,015						
VED-09	0,9	89	21	1,3	36	2,2	5	0,015						

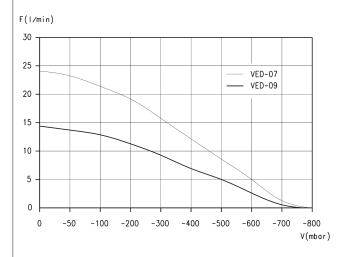
Diagrams VED

LEGEND:

V = Vacuum values

P = Working pressure

Note: vacuum reachable with different supply pressures


LEGEND:

T = Evacuation time

V = Vacuum values

Note: evacuation time for different vacuum values

Diagrams VED

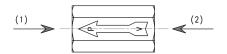
LEGEND:

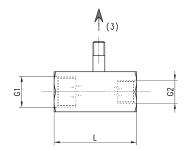
F = Suction rate

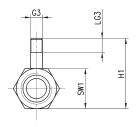
V = Vacuum values

Note: Suction rate with different vacuum values

VACUUM







EJECTOR VED 07 and 09

DIMENSIONS											
Mod.	G1	G2	G3*	H1	L	LG3	SW1				
VED-07	G1/4	G1/8	M5	29,8	35	5	17				
VED-09	G1/4	G1/8	M5	29,8	35	5	17				