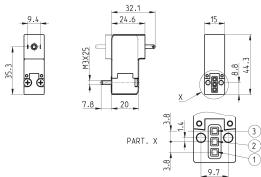
Series PL directly operated solenoid valves

New

3/2-way NC. These solenoid valves can be mounted on a single base (with M5 ports) as well as on manifolds (with M5 ports or cartridge ø 3 and 4).

Note: all Series PL 3-way solenoid valves To operate in AC at the same target voltage, the valves need to use the connector Mod.

TECHNICAL FEATURES	
Function Operation Pneumatic connections Nominal diameter Nominal flow Kv (I/min) Operating pressure Operating temperature Media Response time Installation	3/2 NC direct acting poppet type on subbase by means of M3 screws 1.5 mm $24 \dots 35$ Nl/min (air @ 6 bar Δ P 1 bar) 0.54 -0.9 + 3 8 bar 0 + +50°C filtered air, class 5.4.4 according to ISO 8573-1 (max oil viscosity 32 cSt), inert gas ON <10 msec - OFF <15 msec in any position
MATERIALS IN CONTACT WITH THE MEDIUM	
Body Seals Internal parts	PBT technopolymer FKM, NBR stainless steel, NBR
ELECTRICAL FEATURES	
Voltage Voltage tolerance Power consumption Duty cycle Electrical connection Protection class	24 V DC - 12 V DC - other voltages on demand ±10% 2.7 W ED 100% DIN 43650 connector, (C Shape), 9.4 mm IP65 with connector
Special versions available on demand	

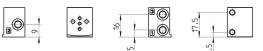

CONTROL > Series PL solenoid valves
CODING EXAMPLE

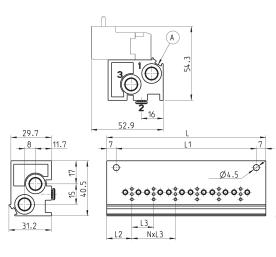
PL	0	00		3	0	3		PL	2	3
FL	U	00		3	0	3	-	FL	2	3
PL	SERIES									
0	BODY DESIG 0 = single sub- 1 = single man 2 = double side	base (M5 only) or i ifold	nterface							
00	NUMBER OF I 00 = interface 01 = single bas 02 ÷ 99 = man		itions							
3	0 = manifold of 3 = 3-way NC	WAYS - FUNCTION r single base electric part revolve								
0	VALVE PORT: 0 = interface (f MANIFOLD PO 2 = M5 side po 3 = ϕ 3 tube si 4 = ϕ 4 tube si 6 = M5 rear po 7 = ϕ 3 tube re 8 = ϕ 4 tube re	or single valve only DRTS: rt de port de port rts ar ports)							
3	NOMINAL DIA 3 = ø 1,5 6 = ø 1,5 NC (1	METER	ר)							
PL	MATERIALS: PL = technopo	lymer PBT body, F	KM poppet seal,	other seals in	NBR					
2	ELECTRICAL 2 = 2 faston pit	CONNECTION: ch 9,4								
3	SOLENOID VC 2 = 12V DC 3 = 24V DC	DLTAGE:								

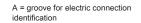
3/2-way NC solenoid valve

Supplied with: 1x interface seal 2x screws

New


				2
Mod.	Orifice Ø (mm)	Qn (Nl/min)	Pressure min-max (bar)	
PL000-303-PL23	1.5	35	3 ÷ 8	12 1
PL000-503-PL23	1.5	35	3 ÷ 8	-
PL000-306-PL23	1.5	24 *	-0.9 ÷ 3	
PL000-506-PL23	1.5	24 *	-0.9 ÷ 3	* flow measurement at 3 bar $\Delta P1$


Single sub-base


Mod. P001-02

Single manifold with rear outlets

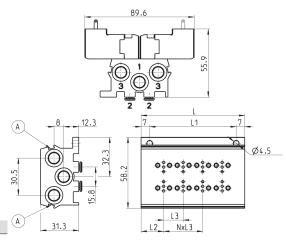
Mod.	Nr valves	L	L1	L2	L3	1 (P)	3 (R)
P102-0*	2	53	39	18,5	16	G1/8	G1/8
P103-0*	3	69	55	18,5	16	G1/8	G1/8
P104-0*	4	85	71	18,5	16	G1/8	G1/8
P105-0*	5	101	87	18,5	16	G1/8	G1/8
P106-0*	6	117	103	18,5	16	G1/8	G1/8

Single manifold with front outlets

This manifold is arranged to be fixed through DIN 46277/3 guide together with the accessory PCF-E520.

29.7	
	¢Ø4.5Ø
	<i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i> <i>\</i>
31.2	

* = see the type of PORTS in the
CODING EXAMPLE TABLE.

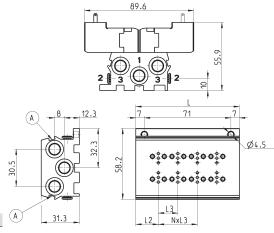

A = groove for electric connection identification

Mod.	Nr valves	L	L1	L2	L3	1 (P)	3 (R)
P102-0*	2	53	39	18,5	16	G1/8	G1/8
P103-0*	3	69	55	18,5	16	G1/8	G1/8
P104-0*	4	85	71	18,5	16	G1/8	G1/8
P105-0*	5	101	87	18,5	16	G1/8	G1/8
P106-0*	6	117	103	18,5	16	G1/8	G1/8

Products designed for industrial applications. General terms and conditions for sale are available on www.camozzi.com.

Double sided manifold with rear outlets

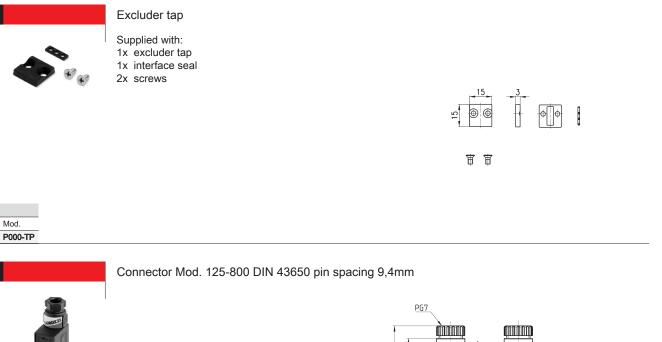
Mod.	Nr valves	L	L1	L2	L3	1 (P)	3 (R)
P204-0*	4	53	39	18,5	16	G1/8	G1/8
P206-0*	6	69	55	18,5	16	G1/8	G1/8
P208-0*	8	85	71	18,5	16	G1/8	G1/8
P210-0*	10	101	87	18,5	16	G1/8	G1/8
P212-0*	12	117	103	18,5	16	G1/8	G1/8


* = see the type of PORTS in the CODING EXAMPLE TABLE.

A = groove for electric connection identification

Double sided manifold with front outlets

This manifold is arranged to be fixed through DIN 46277/3 guide together with the accessory PCF-E520.

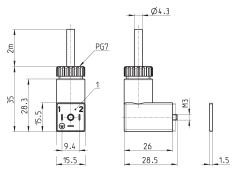

Mod.	Nr valves	L	L1	L2	L3	1 (P)	3 (R)
P204-0*	4	53	39	18,5	16	G1/8	G1/8
P206-0*	6	69	55	18,5	16	G1/8	G1/8
P208-0*	8	85	71	18,5	16	G1/8	G1/8
P210-0*	10	101	87	18,5	16	G1/8	G1/8
P212-0*	12	117	103	18,5	16	G1/8	G1/8


* = see the type of PORTS in the CODING EXAMPLE TABLE.

A = groove for electric connection identification

2

1 = 90° adjustable connector



Mod.

125-800

Connector Mod. 125-900 DIN 43650 pin spacing 9,4mm

The internal rectifier circuit of this connector allows to use solenoid valves with different AC voltage, even if the voltage indicated on the solenoid valve is DC.

1 = 90° adjustable connector